Let:
\[
I = \int \frac{dx}{(x - 3)^{4/5} (x + 1)^{6/5}}
\Rightarrow \text{Let } t = \left( \frac{x - 3}{x + 1} \right)^{1/5}
\Rightarrow \text{Let } y = \left( \frac{x - 3}{x + 1} \right)^{1/5} \Rightarrow y^5 = \frac{x - 3}{x + 1}
\]
This is a homogeneous rational function; use substitution:
Let:
\[
I = \int \left( \frac{1}{(x - 3)^{4/5} (x + 1)^{6/5}} \right) dx
\Rightarrow \text{Let } (x - 3)^{1/5} = u,\quad \text{then relate terms}
\]
Actually, better substitution:
Let:
\[
u = \left( \frac{x - 3}{x + 1} \right)^{1/5} \Rightarrow u^5 = \frac{x - 3}{x + 1}
\Rightarrow x = \frac{3 + u^5 x + u^5}{1 - u^5}
\Rightarrow \text{Too complex}
\]
Instead, try direct integration using known formula:
\[
\int \frac{dx}{(x - a)^m (x - b)^n} = \text{if } m + n = 1, \text{ use substitution }
\Rightarrow \text{Try differentiating } y = \left( \frac{x - 3}{x + 1} \right)^{1/5}
\]
Let:
\[
y = \left( \frac{x - 3}{x + 1} \right)^{1/5} \Rightarrow \frac{dy}{dx} = \frac{1}{5} \left( \frac{x - 3}{x + 1} \right)^{-4/5} \cdot \frac{(x + 1) - (x - 3)}{(x + 1)^2}
= \frac{1}{5} \left( \frac{x - 3}{x + 1} \right)^{-4/5} \cdot \frac{4}{(x + 1)^2}
\]
Then:
\[
dx = \frac{5}{4} (x - 3)^{4/5} (x + 1)^{6/5} dy
\Rightarrow \int \frac{dx}{(x - 3)^{4/5} (x + 1)^{6/5}} = \frac{5}{4} \int dy = \frac{5}{4} y + C
\]
So:
\[
\boxed{\int \frac{dx}{(x - 3)^{4/5} (x + 1)^{6/5}} = \frac{5}{4} \left( \frac{x - 3}{x + 1} \right)^{1/5} + C}
\]