To evaluate \( \int_{1}^{2} \frac{1}{x^2} \, dx = \int_{1}^{2} x^{-2} \, dx \), find the antiderivative:
\[
\int x^{-2} \, dx = \int x^{-2} \, dx = \frac{x^{-1}}{-1} = -\frac{1}{x} + C
\]
Apply the definite integral from 1 to 2:
\[
\left[ -\frac{1}{x} \right]_{1}^{2} = -\frac{1}{2} - \left(-\frac{1}{1}\right) = -\frac{1}{2} + 1 = \frac{1}{2}
\]
Thus, the value of the integral is:
\[
\boxed{\frac{1}{2}}
\]