Step 1: Use property of definite integrals.
Let
\[
I = \int_0^{\pi/2} \ln(\sin x)\, dx
\]
Using property:
\[
I = \int_0^{\pi/2} \ln(\cos x)\, dx
\]
Step 2: Add the two results.
\[
2I = \int_0^{\pi/2} [\ln(\sin x) + \ln(\cos x)] dx
\]
\[
2I = \int_0^{\pi/2} \ln(\sin x \cos x)\, dx
\]
Step 3: Simplify.
\[
\sin x \cos x = \tfrac{1}{2}\sin 2x
\]
So,
\[
2I = \int_0^{\pi/2} \ln\left(\tfrac{1}{2}\sin 2x\right)\, dx
\]
Step 4: Substitution.
Put $2x = t \;\Rightarrow\; dx = dt/2$, limits $0 \to \pi$.
\[
2I = \frac{1}{2}\int_0^{\pi} \ln\left(\tfrac{1}{2}\sin t\right) dt
\]
\[
= \frac{1}{2}\left[\int_0^{\pi} \ln(\sin t)\, dt - \int_0^{\pi} \ln 2 \, dt\right]
\]
Step 5: Evaluate.
\[
\int_0^{\pi} \ln(\sin t)\, dt = 2\int_0^{\pi/2} \ln(\sin t)\, dt = 2I
\]
So,
\[
2I = \frac{1}{2}(2I - \pi \ln 2)
\]
\[
4I = 2I - \pi \ln 2 \;\;\Rightarrow\;\; 2I = -\pi \ln 2
\]
\[
I = -\frac{\pi}{2}\ln 2
\]
Final Answer: \[ \boxed{-\tfrac{\pi}{2}\ln 2} \]
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below: