Step 1: Use property of definite integrals.
\[
I = \int_0^{\pi/2} \frac{\sin^4x}{\sin^4x+\cos^4x} dx
\]
Now,
\[
I = \int_0^{\pi/2} \frac{\cos^4x}{\cos^4x+\sin^4x} dx \text{(by } x \to \tfrac{\pi}{2}-x \text{)}
\]
Step 2: Add the two results.
\[
2I = \int_0^{\pi/2} \frac{\sin^4x}{\sin^4x+\cos^4x} dx + \int_0^{\pi/2} \frac{\cos^4x}{\cos^4x+\sin^4x} dx
\]
\[
2I = \int_0^{\pi/2} 1 \, dx = \frac{\pi}{2}
\]
Step 3: Final value.
\[
I = \frac{\pi}{4}
\]
Final Answer: \[ \boxed{\tfrac{\pi}{4}} \]