Step 1: Use property of definite integrals.
\[
I = \int_0^{\pi/2} \frac{\sin^4x}{\sin^4x+\cos^4x} dx
\]
Now,
\[
I = \int_0^{\pi/2} \frac{\cos^4x}{\cos^4x+\sin^4x} dx \text{(by } x \to \tfrac{\pi}{2}-x \text{)}
\]
Step 2: Add the two results.
\[
2I = \int_0^{\pi/2} \frac{\sin^4x}{\sin^4x+\cos^4x} dx + \int_0^{\pi/2} \frac{\cos^4x}{\cos^4x+\sin^4x} dx
\]
\[
2I = \int_0^{\pi/2} 1 \, dx = \frac{\pi}{2}
\]
Step 3: Final value.
\[
I = \frac{\pi}{4}
\]
Final Answer: \[ \boxed{\tfrac{\pi}{4}} \]
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below: