Step 1: Use the identity for inverse tangent.
We know that \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}(x), \quad |x|<1 \] Step 2: Rewrite the integral.
\[ \int_{0}^{1} \tan^{-1}\left(\frac{2x}{1-x^2}\right)\,dx = 2\int_{0}^{1} \tan^{-1}(x)\,dx \] Step 3: Evaluate \( \int \tan^{-1}(x)\,dx \).
\[ \int \tan^{-1}(x)\,dx = x\tan^{-1}(x) - \frac{1}{2}\ln(1+x^2) \] Step 4: Apply the limits.
\[ 2\left[ x\tan^{-1}(x) - \frac{1}{2}\ln(1+x^2) \right]_{0}^{1} \] \[ = 2\left[ \frac{\pi}{4} - \frac{1}{2}\ln 2 \right] \] Step 5: Simplify.
\[ = \frac{\pi}{2} - \ln 2 \] Step 6: Conclusion.
The value of the given integral is \[ \frac{\pi}{2} - \log 2 \]
Match List-I with List-II
| List-I (Definite integral) | List-II (Value) |
|---|---|
| (A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
| (B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
| (C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
| (D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below: