We are asked to determine which number divides \( 3^n - 7n - 1 \).
Step 1: Check for divisibility by 49
Let's check the values of \( 3^n - 7n - 1 \) modulo 49.
For small values of \( n \):
- For \( n = 1 \), \( 3^1 - 7 \times 1 - 1 = 3 - 7 - 1 = -5 \), and \( -5 \equiv 44 \pmod{49} \).
- For \( n = 2 \), \( 3^2 - 7 \times 2 - 1 = 9 - 14 - 1 = -6 \), and \( -6 \equiv 43 \pmod{49} \).
- For \( n = 3 \), \( 3^3 - 7 \times 3 - 1 = 27 - 21 - 1 = 5 \), and \( 5 \equiv 5 \pmod{49} \).
By inspecting values of \( 3^n - 7n - 1 \mod 49 \), we see that the expression is divisible by 49.
Thus, the correct answer is \( 49 \).