The energy of the transition in a hydrogen atom can be calculated using the Rydberg formula:
\[
E = R_H \left( \frac{1}{n_l^2} - \frac{1}{n_h^2} \right)
\]
where \( R_H \) is the Rydberg constant for hydrogen, and \( n_l \) and \( n_h \) are the lower and higher quantum numbers, respectively. Substituting the given values:
\[
E = (1.097 \times 10^7) \left( \frac{1}{2^2} - \frac{1}{4^2} \right)
\]
\[
E = (1.097 \times 10^7) \left( \frac{1}{4} - \frac{1}{16} \right)
\]
\[
E = (1.097 \times 10^7) \times \frac{3}{16}
\]
\[
E = 20.57 \times 10^3 \, {cm}^{-1}
\]
Thus, the correct value of \( E \) is \( 20.57 \times 10^3 \, {cm}^{-1} \).