Concept:
For an electromagnetic wave propagating in free space:
Electric field \(\vec{E}\), magnetic field \(\vec{B}\), and direction of propagation are mutually perpendicular.
Magnitudes of fields are related by:
\[
E = cB
\]
where \(c = 3 \times 10^{8}\,\text{m/s}\).
Step 1: Identify Direction of Propagation
Given:
\[
\vec{E} = 54\sin(kz-\omega t)\,\hat{i}
\]
The phase \((kz-\omega t)\) indicates propagation along the \(\hat{k}\) (z-axis).
Thus:
\[
\vec{E} \perp \vec{B} \perp \text{direction of propagation}
\]
Hence, magnetic field must be along \(\hat{j}\)-direction.
Step 2: Calculate Magnetic Field Amplitude
\[
B = \frac{E}{c}
= \frac{54}{3 \times 10^{8}}
= 18 \times 10^{-8}\,\text{T}
\]
Step 3: Write Magnetic Field Expression
\[
\vec{B} = 18 \times 10^{-8}\sin(kz-\omega t)\,\hat{j}
\]
\[
\boxed{\vec{B} = 18 \times 10^{-8}\sin(kz-\omega t)\,\hat{j}}
\]