Nm\(^3\)C\(^{-1}\); Nm\(^2\)C\(^{-1}\)
Nm\(^2\)C\(^{-1}\); Nm\(^3\)C\(^{-1}\)
Step 1: The electric field is given as: \[ \vec{E} = \left( \frac{A}{x^2} \hat{i} + \frac{B}{y^3} \hat{j} \right) \] Here, \( \vec{E} \) has units of electric field, which in SI is measured in volts per meter (V/m), or equivalently, Newtons per Coulomb (N/C).
Step 2: Determining the units of A and B. We know that electric field \( \vec{E} \) has units of N/C. Let’s consider each component: 1. For the \( \hat{i} \) component: \[ \frac{A}{x^2} \quad {has units of} \quad \frac{A}{{m}^2} \quad \Rightarrow \quad A = {Nm}^2{C}^{-1} \] 2. For the \( \hat{j} \) component: \[ \frac{B}{y^3} \quad {has units of} \quad \frac{B}{{m}^3} \quad \Rightarrow \quad B = {Nm}^3{C}^{-1} \]
Step 3: Verifying the correct answer. The SI units of \( A \) and \( B \) are \( {Nm}^2{C}^{-1} \) and \( {Nm}^3{C}^{-1} \), respectively, which matches option (B).