Given problem:
We need to find the relationship between \( E_1 \) and \( E_2 \).
The electric field \( E_1 \) at a distance \( r \) from an infinitely long uniformly charged straight conductor with linear charge density \( \lambda \) is given by:
\( E_1 = \frac{\lambda}{2\pi \epsilon_0 r} \)
Consider a semicircular conductor of radius \( r \) with linear charge density \( \lambda \). We need to find the electric field \( E_2 \) at the center of this semicircle.
To do this, we can use the principle of symmetry and integration. The semicircle can be divided into small segments, each contributing to the electric field at the center. Due to symmetry, the horizontal components of the electric field from each segment will cancel out, leaving only the vertical components.
The electric field \( dE \) due to a small segment \( dq \) of the semicircle at an angle \( \theta \) from the vertical is given by:
\( dE = \frac{dq}{4\pi \epsilon_0 r^2} \)
where \( dq = \lambda \, ds \) and \( ds = r \, d\theta \).
Thus,
\( dE = \frac{\lambda r \, d\theta}{4\pi \epsilon_0 r^2} = \frac{\lambda \, d\theta}{4\pi \epsilon_0 r} \)
The vertical component of \( dE \) is:
\( dE_y = dE \sin(\theta) = \frac{\lambda \sin(\theta) \, d\theta}{4\pi \epsilon_0 r} \)
Integrating \( dE_y \) from \( \theta = 0 \) to \( \theta = \pi \):
\( E_2 = \int_0^\pi \frac{\lambda \sin(\theta) \, d\theta}{4\pi \epsilon_0 r} \)
\( E_2 = \frac{\lambda}{4\pi \epsilon_0 r} \int_0^\pi \sin(\theta) \, d\theta \)
\( E_2 = \frac{\lambda}{4\pi \epsilon_0 r} \left[ -\cos(\theta) \right]_0^\pi \)
\( E_2 = \frac{\lambda}{4\pi \epsilon_0 r} \left( -\cos(\pi) + \cos(0) \right) \)
\( E_2 = \frac{\lambda}{4\pi \epsilon_0 r} \left( 1 + 1 \right) \)
\( E_2 = \frac{\lambda}{4\pi \epsilon_0 r} \cdot 2 \)
\( E_2 = \frac{\lambda}{2\pi \epsilon_0 r} \)
From the calculations, we see that:
\( E_1 = \frac{\lambda}{2\pi \epsilon_0 r} \)
\( E_2 = \frac{\lambda}{2\pi \epsilon_0 r} \)
Thus, \( E_1 = E_2 \).
Therefore, the correct answer is:
\( \boxed{E_1 = E_2} \)