∫\(\frac {e^x}{(2+e^x)(e^x +1)}\)dx = (where C is a constant of integration.)
log \((\frac {e^x + 2}{e^x +1})\) + C
log \((\frac {e^x}{e^x +2})\) + C
\((\frac {e^x + 1}{e^x +2})\) + C
log \((\frac {e^x + 1}{e^x +2})\) + C
Detailed Solution:
Step 1: Substitution
Let t = eˣ ⇒ dt = eˣ dx
Given integral becomes:
I = ∫ [t / ((2 + t)(t + 1))] × (1 / t) dt
This simplifies to:
I = ∫ [1 / ((2 + t)(1 + t))] dt
Step 2: Partial Fraction Decomposition
Break the expression into partial fractions:
1 / ((t + 1)(t + 2)) = A / (t + 1) + B / (t + 2)
Multiplying both sides by (t + 1)(t + 2):
1 = A(t + 2) + B(t + 1)
Now solve for A and B:
So, the integrand becomes:
I = ∫ [1 / (t + 1) - 1 / (t + 2)] dt
Step 3: Integrate
I = ∫ [1 / (t + 1)] dt - ∫ [1 / (t + 2)] dt
I = log|t + 1| - log|t + 2| + C
Using the logarithmic identity:
log A - log B = log (A / B)
I = log((t + 1) / (t + 2)) + C
Step 4: Substitute back t = eˣ
I = log((eˣ + 1) / (eˣ + 2)) + C
Final Answer:
log((eˣ + 1) / (eˣ + 2)) + C
Correct Option: (D)