∫\(\frac {e^x}{(2+e^x)(e^x +1)}\)dx = (where C is a constant of integration.)
log \((\frac {e^x + 2}{e^x +1})\) + C
log \((\frac {e^x}{e^x +2})\) + C
\((\frac {e^x + 1}{e^x +2})\) + C
log \((\frac {e^x + 1}{e^x +2})\) + C
Let ex = t Then ex dx = dt
I = ∫\(\frac {e^x}{(2+e^x)(e^x +1)}\)dx
I = ∫\(\frac {1}{(2+t)(t +1)}\) dt
I = ∫\((\frac {1}{t +1} - \frac {1}{2+t})\) dt
I = ∫\(\frac {1}{t +1}\) dt - ∫ \(\frac {1}{2+t}\)dt
I = log (1+t) - log (2+t) +C
I = log \((\frac {1+t}{2+t})\) + C
Put t = ex
I = log \((\frac {1+e^x}{2+e^x})\) + C
I = log \((\frac {e^x+1}{e^x +2})\) + C
Therefore, the correct option is (D) log \((\frac {e^x+1}{e^x =2})\) + C
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).