The high atomization enthalpy (\( \Delta H^0_{\text{atom}} \)) and low hydration enthalpy (\( \Delta H^0_{\text{hydr}} \)) of copper make its standard reduction potential (\( E^0 \)) positive.
Explanation of \( E^0 \) Value - The electrode potential (\( E^0 \)) depends on: - Atomization enthalpy (\( \Delta H^0_{\text{atom}} \)): The energy required to convert solid Cu to Cu\(^{2+}\) is high. - Hydration enthalpy (\( \Delta H^0_{\text{hydr}} \)): Cu\(^{2+}\) has low hydration energy, making it less stable in aqueous solution.
Effect on \( E^0 \) Value - Due to low hydration enthalpy, the reduction of Cu\(^{2+}\) to Cu is not highly favored. - Hence, Cu\(^{2+}/\)Cu has a positive \( E^0 \) value of \( +0.34 \) V, indicating that Cu is less reactive than expected.
Concentration of KCl solution (mol/L) | Conductivity at 298.15 K (S cm-1) | Molar Conductivity at 298.15 K (S cm2 mol-1) |
---|---|---|
1.000 | 0.1113 | 111.3 |
0.100 | 0.0129 | 129.0 |
0.010 | 0.00141 | 141.0 |
Column I | Column II |
---|---|
i. Lead storage cell | d. Inverter |
ii. Mercury cell | b. Apollo Space Programme |
iii. Dry cell | c. Wrist watch |
iv. Fuel cell | a. Wall clock |
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]