Step 1: Formula for Kinematic Viscosity.
The kinematic viscosity \( \nu \) is given by the formula:
\[
\nu = \frac{\mu}{\rho}
\]
Where:
- \( \nu \) is the kinematic viscosity (in \( \text{m}^2/\text{s} \))
- \( \mu \) is the dynamic viscosity (in \( \text{Pa} \cdot \text{s} \) or poise)
- \( \rho \) is the density (in \( \text{kg/m}^3 \))
Step 2: Converting units.
- The given dynamic viscosity \( \mu = 2.2 \) poise.
- \( 1 \, \text{poise} = 0.1 \, \text{Pa} \cdot \text{s} \), so:
\[
\mu = 2.2 \times 0.1 = 0.22 \, \text{Pa} \cdot \text{s}
\]
- The specific gravity \( SG = 0.7 \), and density \( \rho = SG \times 1000 = 0.7 \times 1000 = 700 \, \text{kg/m}^3 \).
Step 3: Calculating Kinematic Viscosity.
Using the formula for kinematic viscosity:
\[
\nu = \frac{0.22}{700} = 3.14 \times 10^{-4} \, \text{m}^2/\text{s}
\]
Step 4: Conclusion.
Therefore, the correct kinematic viscosity is \( 3.14 \times 10^{-4} \, \text{m}^2/\text{s} \), and the correct answer is (1).