The given differential equation is:
\(\frac {dy}{dx} =(1+x^2)(1+y^2)\)
\(⇒\frac {dy}{1+y^2}=(1+x^2)dx\)
Integrating both sides of this equation, we get:
\(∫\frac {dy}{1+y^2}=∫(1+x^2)dx\)
\(⇒tan^{-1}y=∫dx+∫x^2dx\)
\(⇒tan^{-1}y=x+\frac {x^3}{3}+C\)
This is the required general solution of the given differential equation.


Rishika and Shivika were partners in a firm sharing profits and losses in the ratio of 3 : 2. Their Balance Sheet as at 31st March, 2024 stood as follows:
Balance Sheet of Rishika and Shivika as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Capitals: | Equipment | 45,00,000 | |
| Rishika – ₹30,00,000 Shivika – ₹20,00,000 | 50,00,000 | Investments | 5,00,000 |
| Shivika’s Husband’s Loan | 5,00,000 | Debtors | 35,00,000 |
| Creditors | 40,00,000 | Stock | 8,00,000 |
| Cash at Bank | 2,00,000 | ||
| Total | 95,00,000 | Total | 95,00,000 |
The firm was dissolved on the above date and the following transactions took place:
(i) Equipements were given to creditors in full settlement of their account.
(ii) Investments were sold at a profit of 20% on its book value.
(iii) Full amount was collected from debtors.
(iv) Stock was taken over by Rishika at 50% discount.
(v) Actual expenses of realisation amounted to ₹ 2,00,000 which were paid by the firm. Prepare Realisation Account.
A differential equation is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.
The first-order differential equation has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y’
The equation which includes second-order derivative is the second-order differential equation. It is represented as; d/dx(dy/dx) = d2y/dx2 = f”(x) = y”.
Differential equations can be divided into several types namely