In orthogonal cutting, the coefficient of friction \( \mu \) on the rake surface can be determined using the following relation:
\[
\mu = \frac{F_c \sin \alpha + F_t \cos \alpha}{F_c \cos \alpha + F_t \sin \alpha},
\]
where:
- \( F_c \) is the cutting force (900 N),
- \( F_t \) is the thrust force (275 N),
- \( \alpha \) is the rake angle, which is given as 10°.
Substituting the given values into the equation:
\[
\mu = \frac{900 \sin 10^\circ + 275 \cos 10^\circ}{900 \cos 10^\circ + 275 \sin 10^\circ}.
\]
Now, calculate the trigonometric values:
- \( \sin 10^\circ \approx 0.1736 \),
- \( \cos 10^\circ \approx 0.9848 \).
Substituting these values into the equation:
\[
\mu = \frac{900 \times 0.1736 + 275 \times 0.9848}{900 \times 0.9848 + 275 \times 0.1736} = \frac{156.24 + 270.42}{885.32 + 47.74} = \frac{426.66}{933.06} \approx 0.51.
\]
Thus, the coefficient of friction lies between 0.49 and 0.53.