We use the Economic Order Quantity (EOQ) formula to determine the optimal order size for each price range:
The EOQ formula is:
\[
EOQ = \sqrt{\frac{2DS}{H}}
\]
where:
- \( D = 5000 \) (annual demand),
- \( S = 400 \) (ordering cost),
- \( H \) is the holding cost, which is 30% of the unit price.
Case 1: \( 0 \leq Q<1200 \), Unit Price = 10 Rupees
\[
H = 0.30 \times 10 = 3 \, {Rupees/unit}
\]
\[
EOQ = \sqrt{\frac{2 \times 5000 \times 400}{3}} \approx 1154.7 \, {units}
\]
Since \( Q<1200 \), this EOQ is feasible.
Case 2: \( 1200 \leq Q<2000 \), Unit Price = 8 Rupees
\[
H = 0.30 \times 8 = 2.4 \, {Rupees/unit}
\]
\[
EOQ = \sqrt{\frac{2 \times 5000 \times 400}{2.4}} \approx 1291.0 \, {units}
\]
Since \( 1200 \leq Q<2000 \), this EOQ is feasible.
Case 3: \( 2000 \leq Q \), Unit Price = 7 Rupees
\[
H = 0.30 \times 7 = 2.1 \, {Rupees/unit}
\]
\[
EOQ = \sqrt{\frac{2 \times 5000 \times 400}{2.1}} \approx 1380.4 \, {units}
\]
Since \( Q \geq 2000 \), the optimal order size is 2000 units.
Thus, the optimal order size lies between 1995 and 2005 units.