The velocity at the center of a fully developed laminar flow in a circular pipe is given by the following equation:
\[
v_{{max}} = \frac{\Delta P \cdot R^2}{4 \mu L}
\]
Where:
- \( \Delta P = 0.2 \, {Pa} \) (pressure drop),
- \( R = \frac{D}{2} = 5 \, {cm} = 0.05 \, {m} \) (radius of the pipe),
- \( L = 10 \, {m} \) (length of the pipe),
- \( \mu \) is the dynamic viscosity, and \( \mu = \rho \nu \), where \( \nu = 1 \times 10^{-6} \,
{m}^2/{s} \) is the kinematic viscosity and \( \rho = 1000 \, {kg/m}^3 \) is the density of water.
First, calculate the dynamic viscosity \( \mu \):
\[
\mu = \rho \cdot \nu = 1000 \, {kg/m}^3 \times 1 \times 10^{-6} \, {m}^2/{s} = 1 \times 10^{-3} \, {Pa} \cdot {s}
\]
Now substitute the values into the equation for \( v_{{max}} \):
\[
v_{{max}} = \frac{0.2 \times (0.05)^2}{4 \times 1 \times 10^{-3} \times 10}
\]
\[
v_{{max}} = \frac{0.2 \times 0.0025}{4 \times 10^{-3} \times 10} = \frac{0.0005}{0.04} = 0.0125 \, {m/s}
\]
Convert the velocity to mm/s:
\[
v_{{max}} = 0.0125 \times 1000 = 12.5 \, {mm/s}
\]
Thus, the velocity of water at the center of the pipe is \( \boxed{12.3 \, {mm/s} - 12.7 \, {mm/s}} \).