Given:
\(P \propto T^3 \implies P T^{-3} = \text{constant}.\)
From the adiabatic relation:
\(P V^\gamma = \text{constant}.\)
Using the ideal gas law:
\(P \left(\frac{nRT}{P}\right)^\gamma = \text{constant}.\)
Simplify:
\(P^{1-\gamma} T^\gamma = \text{constant}.\)
Substitute \( P \propto T^3 \):
\(P^{1-\gamma} T^\gamma = T^3 \implies P^{1-\gamma} T^{\gamma - 3} = \text{constant}.\)
Reorganize to find the relationship between \( \gamma \) and the exponents:
\(P^{1-\gamma} T^{\gamma - 3} = \text{constant}.\)
Equating powers of \(T\):
\(\frac{\gamma}{1 - \gamma} = -3.\)
Solve for \( \gamma \):
\(\gamma = -3 + 3\gamma.\)
Simplify:
\(3 = 2\gamma \implies \gamma = \frac{3}{2}.\)
The Correct answer is: \(\frac{3}{2}\)
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).