Given:
\(P \propto T^3 \implies P T^{-3} = \text{constant}.\)
From the adiabatic relation:
\(P V^\gamma = \text{constant}.\)
Using the ideal gas law:
\(P \left(\frac{nRT}{P}\right)^\gamma = \text{constant}.\)
Simplify:
\(P^{1-\gamma} T^\gamma = \text{constant}.\)
Substitute \( P \propto T^3 \):
\(P^{1-\gamma} T^\gamma = T^3 \implies P^{1-\gamma} T^{\gamma - 3} = \text{constant}.\)
Reorganize to find the relationship between \( \gamma \) and the exponents:
\(P^{1-\gamma} T^{\gamma - 3} = \text{constant}.\)
Equating powers of \(T\):
\(\frac{\gamma}{1 - \gamma} = -3.\)
Solve for \( \gamma \):
\(\gamma = -3 + 3\gamma.\)
Simplify:
\(3 = 2\gamma \implies \gamma = \frac{3}{2}.\)
The Correct answer is: \(\frac{3}{2}\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: