Step 1: Understanding the Concept:
This problem requires finding the distance between a given point and the origin (0, 0) in a 2D Cartesian coordinate system.
Step 2: Key Formula or Approach:
The distance \(d\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by the distance formula:
\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
When one point is the origin (0, 0) and the other is (x, y), the formula simplifies to:
\[ d = \sqrt{(x - 0)^2 + (y - 0)^2} = \sqrt{x^2 + y^2} \]
Step 3: Detailed Explanation:
We need to find the distance of the point (3, 4) from the origin (0, 0).
Here, \(x = 3\) and \(y = 4\).
Using the simplified distance formula:
\[ d = \sqrt{3^2 + 4^2} \]
\[ d = \sqrt{9 + 16} \]
\[ d = \sqrt{25} \]
\[ d = 5 \]
Distance is a scalar quantity and is always non-negative, so option (D) -5 is incorrect.
Step 4: Final Answer:
The distance of the point (3, 4) from the origin is 5 units.
सरस्वती विद्यालय, कोल्हापुर में मनाए गए 'शिक्षक दिवस' समारोह का 70 से 80 शब्दों में वृत्तांत लेखन कीजिए।
(वृत्तांत में स्थल, काल, घटना का उल्लेख होना अनिवार्य है)
निम्नलिखित जानकारी के आधार पर 50 से 60 शब्दों में विज्ञापन तैयार कीजिए :