Step 1: Recall the distance formula
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Step 2: Substitute the given points
Here $(x_1,y_1) = (2,3)$ and $(x_2,y_2) = (4,1)$.
\[
d = \sqrt{(4-2)^2 + (1-3)^2}
\]
Step 3: Simplify
\[
= \sqrt{(2)^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8}
\]
\[
= 2\sqrt{2}
\]
Step 4: Conclusion
The distance between the two points is:
\[
\boxed{2\sqrt{2}}
\]
$PQ$ is a chord of length $4\ \text{cm}$ of a circle of radius $2.5\ \text{cm}$. The tangents at $P$ and $Q$ intersect at a point $T$. Find the length of $TP$.