Let:
\[
I = \int e^x \left( \log x + \frac{1}{x^2} \right) dx
\]
Use integration by parts:
Let \(u = \log x\), \(dv = e^x dx\). Then,
\[
du = \frac{1}{x} dx,\quad v = e^x
\]
So,
\[
\int e^x \log x \, dx = e^x \log x - \int \frac{e^x}{x} dx
\]
Now consider full integral:
\[
I = \int e^x \log x \, dx + \int \frac{e^x}{x^2} dx
\]
Combining known results:
\[
\int e^x \left( \log x + \frac{1}{x^2} \right) dx = e^x \left( \log x - \frac{1}{x} \right) + C
\]