Note that \( \sqrt{1 - \sin^2 x} = \sqrt{\cos^2 x} = |\cos x| \)
So the integrand becomes:
\[
\frac{\cos x}{|\cos x|} =
\begin{cases}
1, & \text{if } \cos x>0 \\
-1, & \text{if } \cos x<0
\end{cases}
\]
Now analyze the interval \( [0, \pi] \):
- In \( (0, \frac{\pi}{2}) \), \( \cos x>0 \) → value is \( +1 \)
- In \( (\frac{\pi}{2}, \pi) \), \( \cos x<0 \) → value is \( -1 \)
- At \( x = \frac{\pi}{2} \), \( \cos x = 0 \), so integrand undefined, but it's a single point and doesn’t affect definite integral.
Now break the integral:
\[
\int_0^{\pi} \frac{\cos x}{|\cos x|} dx = \int_0^{\frac{\pi}{2}} 1\,dx + \int_{\frac{\pi}{2}}^{\pi} (-1)\,dx = \frac{\pi}{2} - \frac{\pi}{2} = 0
\]