Question:

\(\displaystyle \int_{0}^{\pi} \frac{\cos x}{\sqrt{1 - \sin^2 x}} \, dx =\)

Show Hint

Use the identity \( \sqrt{1 - \sin^2 x} = |\cos x| \) carefully — absolute values change sign based on interval.
Updated On: May 15, 2025
  • \( \pi \)
  • \( \frac{\pi}{2} \)
  • \( \)
  • \( 0 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Note that \( \sqrt{1 - \sin^2 x} = \sqrt{\cos^2 x} = |\cos x| \) So the integrand becomes: \[ \frac{\cos x}{|\cos x|} = \begin{cases} 1, & \text{if } \cos x>0 \\ -1, & \text{if } \cos x<0 \end{cases} \] Now analyze the interval \( [0, \pi] \): - In \( (0, \frac{\pi}{2}) \), \( \cos x>0 \) → value is \( +1 \) - In \( (\frac{\pi}{2}, \pi) \), \( \cos x<0 \) → value is \( -1 \) - At \( x = \frac{\pi}{2} \), \( \cos x = 0 \), so integrand undefined, but it's a single point and doesn’t affect definite integral. Now break the integral: \[ \int_0^{\pi} \frac{\cos x}{|\cos x|} dx = \int_0^{\frac{\pi}{2}} 1\,dx + \int_{\frac{\pi}{2}}^{\pi} (-1)\,dx = \frac{\pi}{2} - \frac{\pi}{2} = 0 \]
Was this answer helpful?
0
0