Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.

Match the LIST-I with LIST-II
| LIST-I | LIST-II | ||
| A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
| B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
| C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
| D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
A unit of a physical quantity is an arbitrarily chosen standard that is broadly acknowledged by the society and in terms of which other quantities of similar nature may be measured.
The process of measurement is basically a comparison process. To measure a physical quantity, we have to find out how many times a standard amount of that physical quantity is present in the quantity being measured. The number thus obtained is known as the magnitude and the standard chosen is called the unit of the physical quantity.
Read More: Fundamental and Derived Units of Measurement
The units defined for the fundamental quantities are called fundamental units.
The units of all other physical quantities which are derived from the fundamental units are called the derived units.