Step 1: Understand the concept involved.
The highest power of \(2\) dividing \(75!\) is given by Legendre’s formula:
\[
n = \left\lfloor \frac{75}{2} \right\rfloor
+ \left\lfloor \frac{75}{4} \right\rfloor
+ \left\lfloor \frac{75}{8} \right\rfloor
+ \left\lfloor \frac{75}{16} \right\rfloor
+ \left\lfloor \frac{75}{32} \right\rfloor
+ \left\lfloor \frac{75}{64} \right\rfloor.
\]
Step 2: Evaluate each term.
\[
\left\lfloor \frac{75}{2} \right\rfloor = 37,
\quad
\left\lfloor \frac{75}{4} \right\rfloor = 18,
\quad
\left\lfloor \frac{75}{8} \right\rfloor = 9,
\]
\[
\left\lfloor \frac{75}{16} \right\rfloor = 4,
\quad
\left\lfloor \frac{75}{32} \right\rfloor = 2,
\quad
\left\lfloor \frac{75}{64} \right\rfloor = 1.
\]
Step 3: Add all contributions.
\[
n = 37 + 18 + 9 + 4 + 2 + 1 = 71.
\]
Step 4: Interpret the result.
This means the highest power of \(2\) dividing \(75!\) is \(2^{71}\).
Step 5: Final conclusion.
Hence, the largest value of \(n\) such that:
\[
2^{n} \mid (75)!
\]
is:
\[
\boxed{71}.
\]