(i) nC3 2nC3=112
⇒3!(2n−3)!(2n)!×n!3!(n−3)!=112
⇒(2n−3)!(2n)(2n−1)(2n−2)(2n−3)!×n(n−1)(n−2)(n−3)!(n−3)!=12
⇒(n−1)(n−2)2(2n−1)(2n−2)=12
⇒(n−1)(n−2)4(2n−1)(n−1)=12
⇒(n−2)(2n−1)=3
⇒2n−1=3(n−2)
⇒2n−1=3n−6
⇒3n−2n=−1+6
⇒n=5
(ii) nC32nC3 =111
⇒3!(2n−3)!(2n)!×n!3!(n−3)!=11
⇒(2n−3)!(2n)(2n−1)(2n−2)(2n−3)!×n(n−1)(n−2)(n−3)!(n−3)!=11
⇒(n−1)(n−2)2(2n−1)(n−1)
⇒(n−1)(n−2)4(2n−1)(n−1)=11
⇒n−24(2n−1)=11
⇒4(2n−1)=11(n−2)
⇒8n−4=11n−22
⇒11n−8n=−4+22
⇒3n=18
⇒n=6