Question:

Determine n if
(i)  2nC3:nC3 = 12: 1
(ii)  2nC3nC3 = 11: 1

Updated On: Oct 21, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i)  2nC3nC3 =121\frac{^{2n}C_3}{^nC_3 }= \frac{12}{1}

(2n)!3!(2n3)!×3!(n3)!n!=121⇒\frac{\left(2n\right)!}{3!\left(2n-3\right)!}\times\frac{3!\left(n-3\right)!}{n!}=\frac{12}{1}

(2n)(2n1)(2n2)(2n3)!(2n3)!×(n3)!n(n1)(n2)(n3)!=12⇒\frac{\left(2n\right)\left(2n-1\right)\left(2n-2\right)\left(2n-3\right)!}{\left(2n-3\right)!}\times\frac{\left(n-3\right)!}{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}=12

2(2n1)(2n2)(n1)(n2)=12⇒\frac{2\left(2n-1\right)\left(2n-2\right)}{\left(n-1\right)\left(n-2\right)}=12

4(2n1)(n1)(n1)(n2)=12⇒\frac{4\left(2n-1\right)\left(n-1\right)}{\left(n-1\right)\left(n-2\right)}=12

(2n1)(n2)=3⇒\frac{\left(2n-1\right)}{\left(n-2\right)}=3
2n1=3(n2)⇒2n-1=3\left(n-2\right)
2n1=3n6⇒2n-1=3n-6
3n2n=1+6⇒3n-2n=-1+6
n=5⇒n=5

(ii)  2nC3nC3 =111 \frac{^{2n}C_3}{^nC_3} = \frac{11}{1}

(2n)!3!(2n3)!×3!(n3)!n!=11⇒\frac{\left(2n\right)!}{3!\left(2n-3\right)!}\times\frac{3!\left(n-3\right)!}{n!}=11

(2n)(2n1)(2n2)(2n3)!(2n3)!×(n3)!n(n1)(n2)(n3)!=11⇒\frac{\left(2n\right)\left(2n-1\right)\left(2n-2\right)\left(2n-3\right)!}{\left(2n-3\right)!}\times\frac{\left(n-3\right)!}{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}=11

2(2n1)(n1)(n1)(n2)⇒\frac{2\left(2n-1\right)\left(n-1\right)}{\left(n-1\right)\left(n-2\right)}

4(2n1)(n1)(n1)(n2)=11⇒\frac{4\left(2n-1\right)\left(n-1\right)}{\left(n-1\right)\left(n-2\right)}=11

4(2n1)n2=11⇒\frac{4\left(2n-1\right)}{n-2}=11
4(2n1)=11(n2)⇒4\left(2n-1\right)=11\left(n-2\right)
8n4=11n22⇒8n-4=11n-22
11n8n=4+22⇒11n-8n=-4+22
3n=18⇒3n=18
n=6⇒n=6

Was this answer helpful?
0
0

Questions Asked in CBSE Class XI exam

View More Questions

Concepts Used:

Permutations and Combinations

Permutation:

Permutation is the method or the act of arranging members of a set into an order or a sequence. 

  • In the process of rearranging the numbers, subsets of sets are created to determine all possible arrangement sequences of a single data point. 
  • A permutation is used in many events of daily life. It is used for a list of data where the data order matters.

Combination:

Combination is the method of forming subsets by selecting data from a larger set in a way that the selection order does not matter.

  • Combination refers to the combination of about n things taken k at a time without any repetition.
  • The combination is used for a group of data where the order of data does not matter.