Question:

Determine n if
(i)  2nC3:nC3 = 12: 1
(ii)  2nC3nC3 = 11: 1

Updated On: Oct 21, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i)  \(\frac{^{2n}C_3}{^nC_3 }= \frac{12}{1}\)

\(⇒\frac{\left(2n\right)!}{3!\left(2n-3\right)!}\times\frac{3!\left(n-3\right)!}{n!}=\frac{12}{1}\)

\(⇒\frac{\left(2n\right)\left(2n-1\right)\left(2n-2\right)\left(2n-3\right)!}{\left(2n-3\right)!}\times\frac{\left(n-3\right)!}{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}=12\)

\(⇒\frac{2\left(2n-1\right)\left(2n-2\right)}{\left(n-1\right)\left(n-2\right)}=12\)

\(⇒\frac{4\left(2n-1\right)\left(n-1\right)}{\left(n-1\right)\left(n-2\right)}=12\)

\(⇒\frac{\left(2n-1\right)}{\left(n-2\right)}=3\)
\(⇒2n-1=3\left(n-2\right)\)
\(⇒2n-1=3n-6\)
\(⇒3n-2n=-1+6\)
\(⇒n=5\)

(ii) \( \frac{^{2n}C_3}{^nC_3} = \frac{11}{1}\)

\(⇒\frac{\left(2n\right)!}{3!\left(2n-3\right)!}\times\frac{3!\left(n-3\right)!}{n!}=11\)

\(⇒\frac{\left(2n\right)\left(2n-1\right)\left(2n-2\right)\left(2n-3\right)!}{\left(2n-3\right)!}\times\frac{\left(n-3\right)!}{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}=11\)

\(⇒\frac{2\left(2n-1\right)\left(n-1\right)}{\left(n-1\right)\left(n-2\right)}\)

\(⇒\frac{4\left(2n-1\right)\left(n-1\right)}{\left(n-1\right)\left(n-2\right)}=11\)

\(⇒\frac{4\left(2n-1\right)}{n-2}=11\)
\(⇒4\left(2n-1\right)=11\left(n-2\right)\)
\(⇒8n-4=11n-22\)
\(⇒11n-8n=-4+22\)
\(⇒3n=18\)
\(⇒n=6\)

Was this answer helpful?
0
0

Concepts Used:

Permutations and Combinations

Permutation:

Permutation is the method or the act of arranging members of a set into an order or a sequence. 

  • In the process of rearranging the numbers, subsets of sets are created to determine all possible arrangement sequences of a single data point. 
  • A permutation is used in many events of daily life. It is used for a list of data where the data order matters.

Combination:

Combination is the method of forming subsets by selecting data from a larger set in a way that the selection order does not matter.

  • Combination refers to the combination of about n things taken k at a time without any repetition.
  • The combination is used for a group of data where the order of data does not matter.