Torque on a current-carrying loop: The torque \( \tau \) on a current loop in a uniform magnetic field is given by: \[ \tau = \vec{m} \times \vec{B} \] where \( \vec{m} \) is the magnetic dipole moment and \( \vec{B} \) is the magnetic field.
Magnetic dipole moment: \[ m = N I A \] where:
- \( N \) is the number of turns,
- \( I \) is the current,
- \( A \) is the area of the loop. \[ \boxed{\tau = N I A B \sin \theta} \]
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $