Step 1: Definition: The molal elevation constant (\( K_b \)) is the increase in boiling point when 1 mole of a non-volatile solute is dissolved in 1 kg of solvent.
Step 2: Formula for Boiling Point Elevation:} \[ \Delta T_b = K_b \times m \] where, \[ m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} \]
Step 3: Calculate Molality: \[ \text{Moles of urea} = \frac{0.6}{60} = 0.01 \text{ mol} \] \[ m = \frac{0.01}{0.1} = 0.1 \text{ mol/kg} \]
Step 4: Calculate Boiling Point Elevation: \[ \Delta T_b = 0.52 \times 0.1 = 0.052 \text{ K} \]
Step 5: Final Boiling Point: \[ T_b = 373.15 + 0.052 = 373.202 \text{ K} \] Thus, the boiling point of the solution is 373.20 K.
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $