We are given the function:
\[
f(x) = \begin{cases}
x^2 + bx + c, & \text{if } x<1
x, & \text{if } x \geq 1.
\end{cases}
\]
Step 1: Continuity at \( x = 1 \).
For differentiability, the function must be continuous at \( x = 1 \). Thus, we require:
\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x).
\]
Substitute:
\[
1^2 + b(1) + c = 1 \quad \Rightarrow \quad 1 + b + c = 1 \quad \Rightarrow \quad b + c = 0.
\]
Step 2: Differentiability at \( x = 1 \).
The derivatives from the left and right must also be equal at \( x = 1 \):
\[
\lim_{x \to 1^-} f'(x) = \lim_{x \to 1^+} f'(x).
\]
\[
\lim_{x \to 1^-} (2x + b) = \lim_{x \to 1^+} 1.
\]
Substitute \( x = 1 \) into the equation:
\[
2(1) + b = 1 \quad \Rightarrow \quad b = -1.
\]
From the equation \( b + c = 0 \), we find:
\[
c = 1.
\]
Step 3: Compute \( b - c \).
Now, calculate:
\[
b - c = -1 - 1 = -2.
\]
Final Answer:
\[
\boxed{-2}
\]