Step 1: Check left-hand limit (\( x \to 0^- \))
Using the standard limit:
\[
\lim_{x \to 0} \frac{1 - \cos 4x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 2x}{x^2}.
\]
Using \( \sin x \approx x \) for small \( x \):
\[
\lim_{x \to 0} \frac{2 (4x)^2}{x^2} = \lim_{x \to 0} \frac{32x^2}{x^2} = 32.
\]
Thus,
\[
\lim_{x \to 0^-} f(x) = 8.
\]
Step 2: Check right-hand limit (\( x \to 0^+ \))
Rewriting the function:
\[
\frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4}.
\]
Multiply numerator and denominator by the conjugate:
\[
\frac{\sqrt{x} (\sqrt{16 + \sqrt{x}} + 4)}{(16 + \sqrt{x}) - 16}.
\]
\[
= \frac{\sqrt{x} (\sqrt{16 + \sqrt{x}} + 4)}{\sqrt{x}}.
\]
\[
= \sqrt{16 + \sqrt{x}} + 4.
\]
Taking the limit as \( x \to 0 \):
\[
\lim_{x \to 0^+} f(x) = \sqrt{16} + 4 = 8.
\]
Step 3: Compute \( a \)
For continuity:
\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0).
\]
Thus, \( a = 8 \), giving the final answer as \( \boxed{8} \).