Question:

Define f: [0,1] → [0,1] by
\(f(x) = \begin{cases} 1 & \text{if } x =0 \\ \frac{1}{n} & \text{if } x=\frac{m}{n}\ \text{for some}\ m, n \isin \N\ \text{with}\ m\le n\ \text{and gcd(m, n)} = 1, \\ 0 & \text{if} x\isin[0,1]\ \text{is irrational}\end{cases}\)
and define g: [0,1]→ [0,1] by
\(g(n) = \begin{cases} 0 & \text{if } x=0 \\ 1 & \text{if } x\isin(0,1]. \end{cases}\)
Then which of the following is/are true?

Updated On: Nov 18, 2025
  • f is Riemann integrable on [0,1].
  • g is Riemann integrable on [0,1].
  • The composite function f○g is Riemann integrable on [0,1].
  • The composite function g○f is Riemann integrable on [0,1].
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, C

Solution and Explanation

Let's analyze each part of the problem to determine the Riemann integrability of the functions \(f\), \(g\), and their compositions \(f \circ g\) and \(g \circ f\) over the interval \([0,1]\). 

  1. Function \(f\):
    • \(f(0) = 1\).
    • \(f(x) = \frac{1}{n}\) if \(x = \frac{m}{n}\), where \(m\), \(n \in \mathbb{N}\), \(m \leq n\) and \(\gcd(m, n) = 1\).
    • \(f(x) = 0\) if \(x\) is irrational.
  2. Function \(g\):
    • \(g(0) = 0\).
    • \(g(x) = 1\) for \(x \in (0,1]\).
  3. Composite Function \(f \circ g\):
    • For \(x = 0\), \(f(g(0)) = f(0) = 1\).
    • For \(x \in (0,1]\), \(f(g(x)) = f(1) = \frac{1}{1} = 1\).
  4. Composite Function \(g \circ f\):
    • For \(x = 0\), \(g(f(0)) = g(1) = 1\).
    • For rational \(x = \frac{m}{n}\), \(g(f(x)) = g\left(\frac{1}{n}\right) = 1\).
    • For irrational \(x\), \(g(f(x)) = g(0) = 0\).

Based on the analysis, the following statements are true:

  • \(f\) is Riemann integrable on \([0,1]\).
  • \(g\) is Riemann integrable on \([0,1]\).
  • The composite function \(f \circ g\) is Riemann integrable on \([0,1]\).
Was this answer helpful?
0
0

Questions Asked in IIT JAM MA exam

View More Questions