Given: \(\angle ADC = \angle BAC\)
To Prove: \(CA^{2}=CB.CD\)
Proof: In ∆ADC and ∆BAC,
\(\angle\)ADC = \(\angle\)BAC (Given)
\(\angle\)ACD = \(\angle\)BCA (Common angle)
∴ ∆ADC ∼ ∆BAC (By AA similarity criterion)
We know that the corresponding sides of similar triangles are in proportion.
∴\(\frac{CA}{CB}=\frac{CD}{CA}\)
\(⇒CA^2=CB \times CD\)
Hence Proved
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
किसी खेल का आँखों देखा वर्णन...
संकेत बिंदु – खेल का वातावरण • लोगों में उत्साह • अंतिम चरण में पासा पलटा
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.