The correct answer is \(=(a\,sin\,x-b\,cos\,x).sin(a\,cosx+b\,sinx)\) Let \(y=cos(a\,cosx+b\,sinx)\) By using chain rule, we obtain \(\frac{dy}{dx}=\frac{d}{dx}cos(a\,cosx+b\,sinx)\) \(⇒\frac{dy}{dx}=-sin(a\,cosx+b\,sinx).\frac{d}{dx}(a\,cosx+b\,sinx)\) \(=-sin(a\,cosx+b\,sinx).[a(-sinx)+b\,cosx]\) \(=(a\,sin\,x-b\,cos\,x).sin(a\,cosx+b\,sinx)\)