We are tasked with simplifying \( \cos(90^\circ - \theta)\sin(90^\circ - \theta) \).
Step 1: Use trigonometric identities for complementary angles.
\[ \cos(90^\circ - \theta) = \sin\theta \quad \text{and} \quad \sin(90^\circ - \theta) = \cos\theta \]
Substituting these into the expression:
\[ \cos(90^\circ - \theta)\sin(90^\circ - \theta) = \sin\theta \cos\theta \]
Step 2: Simplify \( \sin\theta \cos\theta \) using a double-angle identity.
The double-angle identity for sine is:
\[ \sin(2\theta) = 2\sin\theta \cos\theta \]
Rearranging, we get:
\[ \sin\theta \cos\theta = \frac{\sin(2\theta)}{2} \]
Step 3: Express \( \sin(2\theta) \) in terms of \( \tan\theta \).
The identity for \( \sin(2\theta) \) in terms of \( \tan\theta \) is:
\[ \sin(2\theta) = \frac{2\tan\theta}{1 + \tan^2\theta} \]
Substitute this into \( \sin\theta \cos\theta = \frac{\sin(2\theta)}{2} \):
\[ \sin\theta \cos\theta = \frac{1}{2} \cdot \frac{2\tan\theta}{1 + \tan^2\theta} \]
Simplify:
\[ \sin\theta \cos\theta = \frac{\tan\theta}{1 + \tan^2\theta} \]
Final Answer: The value of \( \cos(90^\circ - \theta)\sin(90^\circ - \theta) \) is \( \mathbf{\frac{\tan\theta}{1 + \tan^2\theta}} \), which corresponds to option \( \mathbf{(2)} \).
The given graph illustrates: