Given Expression:
\[ \cos(36^\circ) \cos(54^\circ) - \sin(36^\circ) \sin(54^\circ) \]
Step 1: Use the Cosine Addition Identity
We know that: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Comparing with our expression, we see that: \[ \cos(36^\circ + 54^\circ) = \cos(90^\circ) \]
Step 2: Compute \( \cos(90^\circ) \)
\[ \cos(90^\circ) = 0 \]
Final Answer: 0
To solve the given expression \(\cos(36^\circ) \cos(54^\circ) - \sin(36^\circ) \sin(54^\circ)\), we can use the trigonometric identity for cosine of a sum: \[ \cos(A+B) = \cos A \cos B - \sin A \sin B \] By comparing the given expression with the identity, we note that it matches the form of \(\cos(A+B)\) where \(A=36^\circ\) and \(B=54^\circ\).
Therefore, the given expression simplifies to: \[ \cos(36^\circ + 54^\circ) \] Calculating \(36^\circ + 54^\circ\) gives us \(90^\circ\).
Therefore, the expression becomes: \[ \cos(90^\circ) \] Since \(\cos(90^\circ)=0\), the value of the original expression is \(0\).
Thus, the correct answer is: 0
The given graph illustrates: