Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 

Kepler’s laws of planetary motion are three laws describing the motion of planets around the sun.
All the planets revolve around the sun in elliptical orbits having the sun at one of the foci.
It states that the radius vector drawn from the sun to the planet sweeps out equal areas in equal intervals of time.
It states that the square of the time period of revolution of a planet is directly proportional to the cube of its semi-major axis.
T2 ∝ a3