Construct a 3×4 matrix, whose elements are given by
I. \(a_{ij}=\frac{1}{2}\mid -3i+j\mid\)
II. \(a_{ij}=2i-j\)
In general, a 3 × 4 matrix is given by A=\(\begin{bmatrix} a_{11} & a_{12} & a_{13} &a_{14} \\[0.3em] a_{21} & a_{22} & a_{23}&a_{24} \\[0.3em] a_{31} & a_{32} & a_{33} &a_{34} \end{bmatrix}\)
(i) \(a_{ij}=\mid-3i+j\mid,i=1,2,3\,and\,j=1,2,3,4\)
Therefore \(a_{11}=\frac{1}{2}|-3\times1+1|=\frac{1}{2}|-3+1|=\frac{1}{2}|-2|=\frac{2}{2}=1\)
\(a_{21}=\frac{1}{2}|-3 \times 2+1|=\frac{1}{2}|-6+1|=\frac{1}{2}|-5|=\frac{5}{2}\)
\(a_{31}=\frac{1}{2}|-3\times3+1|=\frac{1}{2}|-9+1|=\frac{1}{2}|-8|=\frac{8}{2}=4\)
\(a_{12}=\frac{1}{2}|-3\times1+2|=\frac{1}{2}|-3+2|=\frac{1}{2}|-1|=\frac{1}{2}\)
\(a_{22}=\frac{1}{2}|-3\times2+2|=\frac{1}{2}|-6+2|=\frac{1}{2}|-4|=\frac{4}{2}=2\)
\(a_{32}=\frac{1}{2}|-3\times3+2|=\frac{1}{2}|-9+2|=\frac{1}{2}|-7|=\frac{7}{2}\)
\(a_{13}=\frac{1}{2}|-3\times1+3|=\frac{1}{2}|-3+3|=0\)
\(a_{23}=\frac{1}{2}|-3\times2+3|=\frac{1}{2}|-6+3|=\frac{1}{2}|-3|=\frac{3}{2}\)
\(a_{33}=\frac{1}{2}|-3\times3+3|=\frac{1}{2}|-9+3|=\frac{1}{2}|-6|=\frac{6}{2}=3\)
\(a_{14}=\frac{1}{2}|-3\times1+4|=\frac{1}{2}|-3+4|=\frac{1}{2}|1|=\frac{1}{2}\)
\(a_{24}=\frac{1}{2}|-3\times2+4|=\frac{1}{2}|-6+4|=\frac{1}{2}|-2|=\frac{2}{2}=1\)
\(a_{34}=\frac{1}{2}|-3\times3+4|=\frac{1}{2}|-9+4|=\frac{1}{2}|-5|=\frac{5}{2}\)
Therefore, the required matrix is \(A=\begin{bmatrix}1& \frac{1}{2}& 0& \frac{1}{2}\\ \frac{5}{2}& 2& \frac{3}{2} &1 \\ 4& \frac{7}{2}& 3 &\frac{5}{2}\end{bmatrix}\)
(ii)\(a_{ij}\)=2i-j i=1,2,3 and j=1,2,3,4
therefore
\(a_{11}=2\times1-1=2-1=1\)
\(a_{21}=2\times2-1=4-1=3\)
\(a_{31}=2\times3-1=6-1=5\)
\(a_{12}=2\times1-2=2-2=0\)
\(a_{22}=2\times2-2=4-2=2\)
\(a_{32}=2\times3-2=6-2=4\)
\(a_{13}=2\times1-3=2-3=-1\)
\(a_{23}=2\times2-3=4-3=1\)
\(a_{33}=2\times3-3=6-3=3\)
\(a_{14}=2\times1-4=2-4=-2\)
\(a_{24}=2\times2-4=4-4=0\)
\(a_{34}=2\times3-4=6-4=2\)
Therefore, the required matrix is \(A=\begin{bmatrix}1& 0& -1& -2\\ 3& 2& 1& 0\\ 5 &4& 3 &2\end{bmatrix}\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.