Given:
\[ E = \frac{B - x^2}{At}. \]The dimensions of \(E\), \(x\), and \(t\) are:
\[ [E] = ML^2T^{-2}, \quad [x] = L, \quad [t] = T. \]The term \(B - x^2\) must have the same dimensions as \(E\), so:
\[ [B] = L^2. \]Rearrange the equation to find the dimensions of \(A\):
\[ A = \frac{B - x^2}{E \cdot t} = \frac{L^2}{ML^2T^{-2} \cdot T} = M^{-1}T. \]Therefore:
\[ [A] = M^{-1}T. \]The dimensions of \(AB\) are:
\[ [AB] = [A][B] = (M^{-1}T)(L^2) = L^2M^{-1}T. \]Thus, the answer is:
\[ L^2M^{-1}T. \]The ratio of the power of a light source \( S_1 \) to that of the light source \( S_2 \) is 2. \( S_1 \) is emitting \( 2 \times 10^{15} \) photons per second at 600 nm. If the wavelength of the source \( S_2 \) is 300 nm, then the number of photons per second emitted by \( S_2 \) is ________________ \( \times 10^{14} \).
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: