Given:
\[ E = \frac{B - x^2}{At}. \]The dimensions of \(E\), \(x\), and \(t\) are:
\[ [E] = ML^2T^{-2}, \quad [x] = L, \quad [t] = T. \]The term \(B - x^2\) must have the same dimensions as \(E\), so:
\[ [B] = L^2. \]Rearrange the equation to find the dimensions of \(A\):
\[ A = \frac{B - x^2}{E \cdot t} = \frac{L^2}{ML^2T^{-2} \cdot T} = M^{-1}T. \]Therefore:
\[ [A] = M^{-1}T. \]The dimensions of \(AB\) are:
\[ [AB] = [A][B] = (M^{-1}T)(L^2) = L^2M^{-1}T. \]Thus, the answer is:
\[ L^2M^{-1}T. \]Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: