Step 1: Analyze the conditions for coinciding lines. For the lines 3x + 2y + p = 0 and qx + qy − 7 = 0 to coincide, the coefficients of x, y, and the constants must be proportional:
$\frac{3}{q} = \frac{2}{q} = \frac{p}{-7}$
Step 2: Test each statement.
Answer: Option 1.
If the set of all values of \( a \), for which the equation \( 5x^3 - 15x - a = 0 \) has three distinct real roots, is the interval \( (\alpha, \beta) \), then \( \beta - 2\alpha \) is equal to
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .
A | B | C | D | Average |
---|---|---|---|---|
3 | 4 | 4 | ? | 4 |
3 | ? | 5 | ? | 4 |
? | 3 | 3 | ? | 4 |
? | ? | ? | ? | 4.25 |
4 | 4 | 4 | 4.25 |