Step 1: Use Fick's First Law of Diffusion.
The molar flux \( J_A \) is given by Fick's first law:
\[
J_A = -D_{AB} \frac{\partial C_A}{\partial x}.
\]
Step 2: Calculate the concentration gradient.
The mole fraction gradient of \( A \) is:
\[
\frac{\partial y_A}{\partial x} = \frac{y_{A,\text{right}} - y_{A,\text{left}}}{\Delta x} = \frac{0.2 - 0.8}{0.02} = -30 \, \text{m}^{-1}.
\]
The total molar concentration is \( C = 100 \, \text{mol} \, \text{m}^{-3} \). The concentration gradient is:
\[
\frac{\partial C_A}{\partial x} = C \cdot \frac{\partial y_A}{\partial x} = 100 \cdot (-30) = -3000 \, \text{mol} \, \text{m}^{-4}.
\]
Step 3: Calculate the molar flux.
Substitute \( D_{AB} = 1 \times 10^{-5} \, \text{m}^2 \, \text{s}^{-1} \):
\[
J_A = -D_{AB} \frac{\partial C_A}{\partial x} = -\left( 1 \times 10^{-5} \right) \cdot (-3000) = 3 \times 10^{-2} \, \text{mol} \, \text{m}^{-2} \, \text{s}^{-1}.
\]
Step 4: Calculate the molar flow rate.
The molar flow rate is:
\[
\dot{N}_A = J_A \cdot A,
\]
where \( A \) is the cross-sectional area:
\[
A = 0.2 \, \text{m} \cdot 0.1 \, \text{m} = 0.02 \, \text{m}^2.
\]
Substitute \( J_A = 3 \times 10^{-2} \, \text{mol} \, \text{m}^{-2} \, \text{s}^{-1} \):
\[
\dot{N}_A = 3 \times 10^{-2} \cdot 0.02 = 6 \times 10^{-4} \, \text{mol} \, \text{s}^{-1}.
\]
Step 5: Conclusion.
The molar flow rate of \( A \) is \( 6 \times 10^{-4} \, \text{mol} \, \text{s}^{-1} \).