Question:

Consider the solubility product of barite (BaSO4) at 25 °C and 1 bar to be 10-10. If the activities of \(Ba^{2+}\) and \(SO^{2-}_4\) ions are 0.5×10-5 and 10-X, respectively, then the absolute value of 'X' is ____(rounded off to one decimal place). 

Show Hint

Always check unit consistency in solubility product problems and express values in proper scientific notation before applying logarithms. This avoids rounding errors.
Updated On: Aug 21, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 4.6

Solution and Explanation

Step 1: Write the solubility product expression \[ K_{sp} = [\text{Ba}^{2+}] \cdot [\text{SO}_4^{2-}] \] Step 2: Substitute known values \[ 10^{-10} = (0.5 \times 10^{-5}) \cdot (10^{-X}) \] Step 3: Rearrange for \(10^{-X}\) \[ 10^{-X} = \frac{10^{-10}}{0.5 \times 10^{-5}} \] Step 4: Simplify the denominator \[ 10^{-X} = \frac{10^{-10}}{5 \times 10^{-6}} = \frac{10^{-10}}{5 \cdot 10^{-6}} \] Step 5: Simplify further \[ 10^{-X} = \frac{1}{5} \times 10^{-4} \] Step 6: Express in standard form \[ 10^{-X} = 0.2 \times 10^{-4} = 2 \times 10^{-5} \] Step 7: Take log to solve for \(X\) \[ -\,X = \log_{10}(2 \times 10^{-5}) \] \[ -\,X = \log_{10} 2 + \log_{10} 10^{-5} \] \[ -\,X = 0.3010 - 5 \] \[ -\,X = -4.699 \] Step 8: Final result \[ X = 4.699 \approx 4.7 \] \[ \boxed{X \approx 4.7} \]
Was this answer helpful?
0
0