Step 1: Write the solubility product expression
\[
K_{sp} = [\text{Ba}^{2+}] \cdot [\text{SO}_4^{2-}]
\]
Step 2: Substitute known values
\[
10^{-10} = (0.5 \times 10^{-5}) \cdot (10^{-X})
\]
Step 3: Rearrange for \(10^{-X}\)
\[
10^{-X} = \frac{10^{-10}}{0.5 \times 10^{-5}}
\]
Step 4: Simplify the denominator
\[
10^{-X} = \frac{10^{-10}}{5 \times 10^{-6}} = \frac{10^{-10}}{5 \cdot 10^{-6}}
\]
Step 5: Simplify further
\[
10^{-X} = \frac{1}{5} \times 10^{-4}
\]
Step 6: Express in standard form
\[
10^{-X} = 0.2 \times 10^{-4} = 2 \times 10^{-5}
\]
Step 7: Take log to solve for \(X\)
\[
-\,X = \log_{10}(2 \times 10^{-5})
\]
\[
-\,X = \log_{10} 2 + \log_{10} 10^{-5}
\]
\[
-\,X = 0.3010 - 5
\]
\[
-\,X = -4.699
\]
Step 8: Final result
\[
X = 4.699 \approx 4.7
\]
\[
\boxed{X \approx 4.7}
\]