Question:

Consider the set $S = \{1, 2, 3, \dots, 1000\}$. How many arithmetic progressions can be formed from the elements of $S$ that start with $1$ and end with $1000$ and have at least $3$ elements?

Show Hint

Number of APs is linked to divisor count of the gap between first and last term.
Updated On: Jul 31, 2025
  • 3
  • 4
  • 6
  • 7
  • 8
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

To find the number of arithmetic progressions (APs) from the set \( S = \{1, 2, 3, \dots, 1000\} \) that start with 1, end with 1000, and have at least 3 elements, follow these steps:
  1. An arithmetic progression can be defined by its first term \( a \), common difference \( d \), and number of terms \( n \). The general term \( T_n \) of an AP is given by:
    \( T_n = a + (n-1) \cdot d \)
  2. Since the first term \( a = 1 \) and the last term \( T_n = 1000 \), we have:
    \( 1000 = 1 + (n-1) \cdot d \)
  3. Rearrange to find:
    \( (n-1) \cdot d = 999 \)
  4. To ensure there are at least 3 terms, \( n \geq 3 \). For each possible \( n \), we find \( d \) such that \( 999 \) is divisible by \( n-1 \). Then:
    • \( n=3 \): \( n-1=2 \), \( d=\frac{999}{2}=499.5 \) (Not an integer)
    • \( n=4 \): \( n-1=3 \), \( d=\frac{999}{3}=333 \) (Valid AP)
    • \( n=5 \): \( n-1=4 \), \( d=\frac{999}{4}=249.75 \) (Not an integer)
    • \( n=6 \): \( n-1=5 \), \( d=\frac{999}{5}=199.8 \) (Not an integer)
    • \( n=7 \): \( n-1=6 \), \( d=\frac{999}{6}=166.5 \) (Not an integer)
    • \( n=8 \): \( n-1=7 \), \( d=\frac{999}{7}=142.714 \) (Not an integer)
    • \( n=9 \): \( n-1=8 \), \( d=\frac{999}{8}=124.875 \) (Not an integer)
    • \( n=10 \): \( n-1=9 \), \( d=\frac{999}{9}=111 \) (Valid AP)
    • \( n=12 \): \( n-1=11 \), \( d=\frac{999}{11}=90.818 \) (Not an integer)
    • \( n=14 \): \( n-1=13 \), \( d=\frac{999}{13}=76.846 \) (Not an integer)
    • \( n=19 \): \( n-1=18 \), \( d=\frac{999}{18}=55.5 \) (Not an integer)
    • \( n=28 \): \( n-1=27 \), \( d=\frac{999}{27}=37 \) (Valid AP)
    • \( n=37 \): \( n-1=36 \), \( d=\frac{999}{36}=27.75 \) (Not an integer)
    • \( n=133 \): \( n-1=132 \), \( d=\frac{999}{132}=7.568 \) (Not an integer)
    • \( n=334 \): \( n-1=333 \), \( d=\frac{999}{333}=3 \) (Valid AP)
Thus, the valid values of \( n \) and their corresponding \( d \) are:
nd
4333
10111
2837
3343
Therefore, there are 4 possible arithmetic progressions.
Was this answer helpful?
0
0