Step 1: Define variables.
Let:
- \( F \) = feed flow rate of \( A \),
- \( P \) = purge flow rate,
- \( R \) = recycle flow rate.
The relationship between recycle and purge streams is:
\[
\frac{R}{P} = 10 \quad \Rightarrow \quad R = 10P.
\]
Step 2: Material balance on \( A \).
The total flow of \( A \) entering the reactor is:
\[
F + R = F + 10P.
\]
Since the single-pass conversion is \( 50\% \):
\[
\text{Unreacted } A = 0.5(F + 10P).
\]
The unreacted \( A \) splits into recycle and purge streams:
\[
R + P = 0.5(F + 10P).
\]
Substitute \( R = 10P \):
\[
10P + P = 0.5(F + 10P).
\]
\[
11P = 0.5F + 5P \quad \Rightarrow \quad 6P = 0.5F \quad \Rightarrow \quad F = 12P.
\]
Step 3: Solve for \( P \).
The total product rate \( B = 100 \, \text{kmol/h} \), and the feed is \( 90\% \, A \):
\[
F \cdot 0.9 = 100 \quad \Rightarrow \quad F = \frac{100}{0.9} = 111.1 \, \text{kmol/h}.
\]
Substitute \( F = 12P \):
\[
111.1 = 12P \quad \Rightarrow \quad P = \frac{111.1}{12} \approx 18.2 \, \text{kmol/h}.
\]
Step 4: Conclusion.
The flow rate of \( A \) in the purge stream is \( 18.2 \, \text{kmol/h} \).