Step 1: Substitute the assumed solution
\[
f(x,y) = e^{\xi x + \eta y}.
\]
Compute the required derivatives:
\[
\frac{\partial f}{\partial x} = \xi e^{\xi x + \eta y}, \qquad
\frac{\partial^{2} f}{\partial x^{2}} = \xi^{2} e^{\xi x + \eta y},
\]
\[
\frac{\partial f}{\partial y} = \eta e^{\xi x + \eta y}, \qquad
\frac{\partial^{2} f}{\partial y^{2}} = \eta^{2} e^{\xi x + \eta y}.
\]
Step 2: Substitute into the PDE.
\[
a\xi^{2} e^{\xi x+\eta y} + b\eta^{2} e^{\xi x+\eta y}
= e^{\xi x+\eta y}.
\]
Divide both sides by the exponential (never zero):
\[
a\xi^{2} + b\eta^{2} = 1.
\]
Step 3: Check each option.
Option (A):
\[
\xi=\frac{1}{\sqrt{2a}},\quad \eta=\frac{1}{\sqrt{2b}}.
\]
Compute:
\[
a\xi^{2}=a\left(\frac{1}{2a}\right)=\frac{1}{2},
\quad
b\eta^{2}=b\left(\frac{1}{2b}\right)=\frac{1}{2}.
\]
Sum:
\[
a\xi^{2}+b\eta^{2}=\frac{1}{2}+\frac{1}{2}=1.
\]
So (A) satisfies the PDE.
Option (B):
\[
\xi=\frac{1}{\sqrt{a}},\quad \eta=0.
\]
Compute:
\[
a\xi^{2}=a\left(\frac{1}{a}\right)=1,
\quad
b\eta^{2}=0.
\]
So
\[
a\xi^{2}+b\eta^{2}=1.
\]
Thus (B) is valid.
Option (C):
\[
\xi=0,\;\eta=0 \quad\Rightarrow\quad a\xi^{2}+b\eta^{2}=0\ne 1.
\]
Not valid.
Option (D):
\[
\xi=\frac{1}{\sqrt{a}},\;\eta=\frac{1}{\sqrt{b}}
\]
Compute:
\[
a\xi^{2}=1,\qquad b\eta^{2}=1.
\]
Sum:
\[
1+1=2\ne 1.
\]
Not valid.
Thus the only correct combinations are (A) and (B).
Final Answer: (A), (B)