Question:

Consider the linear mapping F: R2 →R2 defined by F(x, y) = (3x+4y, 2x-5y) and following bases of R2: E= {e1, e2} = {(1, 0), (0, 1)} and S = {u1, u2} = {(1, 2), (2, 3)}. Then the matrix A representing F relative to the basis E is:

Updated On: Mar 12, 2025
  • \(\begin{bmatrix} 3 & 4 \\   2 & -5  \end{bmatrix}\)
  • \(\begin{bmatrix} 3 & -5 \\   4 & 3  \end{bmatrix}\)
  • \(\begin{bmatrix} 3 & 0 \\   1 & -5  \end{bmatrix}\)
  • \(\begin{bmatrix} 1 & 2 \\   3 & 4  \end{bmatrix}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct answer is(A): \(\begin{bmatrix} 3 & 4 \\   2 & -5  \end{bmatrix}\)
Was this answer helpful?
1
1