Consider the horizontal axis passing through the centroid of the steel beam cross-section shown (a symmetric "plus" of arm width $b$). What is the shape factor (rounded off to one decimal place) for the cross-section?

Step 1: Area and symmetry.
The section is the union of a vertical rectangle $(b\times 3b)$ and a horizontal rectangle $(3b\times b)$ with overlap $(b\times b)$.
\[
A = (3b^2+3b^2-b^2)=5b^2.
\]
Depth $=3b\Rightarrow c=\dfrac{3b}{2}=1.5b$ about the centroidal horizontal axis.
Step 2: Elastic section modulus $Z=\dfrac{I_x{c}$.}
\[
I_x = I_x(\text{vert.})+I_x(\text{horiz.})-I_x(\text{overlap})
= \frac{b(3b)^3}{12}+\frac{(3b)b^3}{12}-\frac{b\cdot b^3}{12}
= \frac{29}{12}b^4.
\]
\[
Z = \frac{I_x}{c}=\frac{\frac{29}{12}b^4}{1.5b}=\frac{29}{18}b^3\approx 1.611\,b^3.
\]
Step 3: Plastic section modulus $Z_p$.
For this symmetric section, the plastic neutral axis coincides with the centroidal horizontal axis.
Top half area $=A/2=2.5b^2$. Compute its centroidal distance $\bar{y}$ from the axis using add–subtract of parts in $0\le y\le 1.5b$:
\[
A_1=1.5b^2,\ y_1=0.75b;
A_2=1.5b^2,\ y_2=0.25b;
A_3=0.5b^2,\ y_3=0.25b.
\]
\[
Q_{\text{top}}=A_1y_1+A_2y_2-A_3y_3=(1.5\cdot0.75+1.5\cdot0.25-0.5\cdot0.25)b^3
=1.375\,b^3.
\]
\[
\bar{y}=\frac{Q_{\text{top}}}{A/2}=\frac{1.375}{2.5}b=0.55b.
\]
\[
Z_p=A\bar{y}=5b^2\cdot0.55b=2.75\,b^3.
\]
Step 4: Shape factor.
\[
\text{Shape factor }= \frac{Z_p}{Z}= \frac{2.75}{1.611}\approx 1.707 \approx 1.7.
\]
\[
\boxed{1.7}
\]
Consider a five-digit number PQRST that has distinct digits P, Q, R, S, and T, and satisfies the following conditions:
1. \( P<Q \)
2. \( S>P>T \)
3. \( R<T \)
If integers 1 through 5 are used to construct such a number, the value of P is:



