Assume a rate law of the form:
\[ \text{Rate(AB)} = k' \,[\text{A}_2]^m \,[\text{B}_2]^n, \]where \(\text{Rate(AB)}\) is the initial rate of formation of \(\text{AB}\).
Comparing experiments 1 and 2:
\[ [A_2] \text{ doubles from }0.1 \text{ to }0.2,\; [B_2]\text{ constant at }0.1 \] \[ \frac{\text{Rate}_2}{\text{Rate}_1} = \frac{2.0\times 10^{-3}}{5.0\times 10^{-4}} = 4 \quad\Longrightarrow\quad 2^m = 4 \quad\Longrightarrow\quad m=2. \]Comparing experiments 2 and 3:
\[ [B_2]\text{ doubles from }0.1 \text{ to }0.2,\; [A_2]\text{ constant at }0.2 \] \[ \frac{\text{Rate}_3}{\text{Rate}_2} = \frac{1.0\times 10^{-3}}{2.0\times 10^{-3}} = 0.5 \quad\Longrightarrow\quad 2^n = 0.5 \quad\Longrightarrow\quad n=-1. \]Hence,
\[ \text{Rate(AB)} = k' \,[\text{A}_2]^2 \,[\text{B}_2]^{-1}. \]Using experiment 1 (\([A_2]=0.1\,\text{M}, [B_2]=0.1\,\text{M}\)):
\[ \text{Rate(AB)} = 5.0\times 10^{-4} = k' \,(0.1)^2 \,(0.1)^{-1} = k'\,\bigl(0.01\bigr)\bigl(10\bigr) = k' \,\times\, 0.1, \] \[ k' = \frac{5.0\times 10^{-4}}{0.1} = 5.0\times 10^{-3}. \]For the overall reaction \(\text{A}_2 + \text{B}_2 \to 2\,\text{AB}\), the rate of consumption of reactants (the "reaction rate") is half the rate of formation of \(\text{AB}\), i.e.,
\[ \text{Rate} = -\frac{d[\text{A}_2]}{dt} = -\frac{d[\text{B}_2]}{dt} = \frac{1}{2}\,\frac{d[\text{AB}]}{dt} = \frac{\text{Rate(AB)}}{2}. \]Thus, if
\[ \text{Rate(AB)} = k'[\text{A}_2]^2[\text{B}_2]^{-1}, \]then the actual rate law for reactant consumption is
\[ \text{Rate} = k \,[\text{A}_2]^2\,[\text{B}_2]^{-1} = \frac{\text{Rate(AB)}}{2} = \frac{k'}{2}[\text{A}_2]^2[\text{B}_2]^{-1}. \]Hence,
\[ k = \tfrac{k'}{2} = \tfrac{5.0\times 10^{-3}}{2} = 2.5\times 10^{-3}. \]Therefore, the rate constant for the reaction (based on reactant consumption) is \(2.5\times 10^{-3}\).
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
The system of simultaneous linear equations :
\[ \begin{array}{rcl} x - 2y + 3z &=& 4 \\ 2x + 3y + z &=& 6 \\ 3x + y - 2z &=& 7 \end{array} \]
Calculate the determinant of the matrix: