Let $\alpha$ be a solution of $x^2 + x + 1 = 0$, and for some $a$ and $b$ in $\mathbb{R}$, $ \begin{bmatrix} 1 & 16 & 13 \\-1 & -1 & 2 \\-2 & -14 & -8 \end{bmatrix} \begin{bmatrix} 4 \\a \\b \end{bmatrix} = \begin{bmatrix} 0 \\0 \\0 \end{bmatrix}. $ If $\frac{4}{\alpha^4} + \frac{m} {\alpha^a} + \frac{n}{\alpha^b} = 3$, then $m + n$ is equal to _____.
If the set of all values of \( a \), for which the equation \( 5x^3 - 15x - a = 0 \) has three distinct real roots, is the interval \( (\alpha, \beta) \), then \( \beta - 2\alpha \) is equal to
A | B | C | D | Average |
---|---|---|---|---|
3 | 4 | 4 | ? | 4 |
3 | ? | 5 | ? | 4 |
? | 3 | 3 | ? | 4 |
? | ? | ? | ? | 4.25 |
4 | 4 | 4 | 4.25 |