Consider the following two reactions and their corresponding Hammett plots
Reaction M is an SN1 reaction where the rate-determining step involves the formation of a carbocation. Electron-donating groups (EDGs) stabilize the carbocation and increase the reaction rate (negative σ values lead to positive log(kX/kH)), while electron-withdrawing groups (EWGs) destabilize the carbocation and decrease the reaction rate (positive σ values lead to negative log(kX/kH)). The Hammett plot for Reaction M shows a negative slope (ρ < 0), consistent with carbocation formation.
Reaction N is the hydrolysis of an ester, likely proceeding through a mechanism where EWGs facilitate the attack of water (positive σ → positive log(kX/kH)) and EDGs hinder it (negative σ → negative log(kX/kH)). The Hammett plot for Reaction N shows a positive slope (ρ > 0), consistent with this mechanism.
σX values for substituents:
Analysis of Hammett Plots:
Reaction M (ρ < 0):
Reaction N (ρ > 0):
Option A:
Option C:
✅ Both options (A) and (C) align with expected trends in both Reaction M and N Hammett plots.
❌ Options (B) and (D) contradict expected behavior and are inconsistent.
The Lineweaver-Burk plot for an enzyme obeying the Michaelis-Menten mechanism is given below.
The slope of the line is \(0.36 \times 10^2\) s, and the y-intercept is \(1.20\) mol\(^{-1}\) L s. The value of the Michaelis constant (\(K_M\)) is ________ \( \times 10^{-3} \) mol L\(^{-1}\) (in integer). [Note: \(v\) is the initial rate, and \([S]_0\) is the substrate concentration]
Consider a Carnot engine with a hot source kept at 500 K. From the hot source, 100 J of energy (heat) is withdrawn at 500 K. The cold sink is kept at 300 K. The efficiency of the Carnot engine is ___________ (rounded off to one decimal place).
For the cell reaction, \[ Hg_2Cl_2 (s) + H_2 (1 \, {atm}) \rightarrow 2Hg (l) + 2H^+ (a=1) + 2Cl^- (a=1) \] The standard cell potential is \( \mathcal{E}^0 = 0.2676 \) V, and \( \left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_P = -3.19 \times 10^{-4} \) V K\(^{-1}\). The standard enthalpy change of the reaction (\( \Delta_r H^0 \)) at 298 K is \( -x \) kJ mol\(^{-1}\). The value of \( x \) is ___________ (rounded off to two decimal places). [Given: Faraday constant \( F = 96500 \) C mol\(^{-1}\)]
The mean energy of a molecule having two available energy states at \( \epsilon = 0 \) J and \( \epsilon = 4.14 \times 10^{-21} \) J at 300 K is ___________ \( \times 10^{-21} \) J (rounded off to two decimal places). [Given: Boltzmann constant \( k_B = 1.38 \times 10^{-23} \) J K\(^{-1}\)]
Wavefunctions and energies for a particle confined in a cubic box are \( \psi_{n_x,n_y,n_z} \) and \( E_{n_x,n_y,n_z} \), respectively. The functions \( \phi_1, \phi_2, \phi_3 \), and \( \phi_4 \) are written as linear combinations of \( \psi_{n_x,n_y,n_z} \). Among these functions, the eigenfunction(s) of the Hamiltonian operator for this particle is/are \[ \phi_1 = \frac{1}{\sqrt{2}} \psi_{1,4,1} - \frac{1}{\sqrt{2}} \psi_{2,2,3} \] \[ \phi_2 = \frac{1}{\sqrt{2}} \psi_{1,5,1} + \frac{1}{\sqrt{2}} \psi_{3,3,3} \] \[ \phi_3 = \frac{1}{\sqrt{2}} \psi_{1,3,8} + \frac{1}{\sqrt{2}} \psi_{3,8,1} \] \[ \phi_4 = \frac{1}{2} \psi_{3,3,1} + \frac{\sqrt{3}}{2} \psi_{2,4,1} \]
The correct option(s) of reagents and reaction sequences suitable for carrying out the following transformation is/are
The UV-visible spectrum of [Ni(en)\(_3\)]\(^{2+}\) (en = ethylenediamine) shows absorbance maxima at 11200 cm\(^{-1}\), 18350 cm\(^{-1}\), and 29000 cm\(^{-1}\).
[Given: Atomic number of Ni = 28] The correct match(es) between absorbance maximum and electronic transition is/are
The correct option with regard to the following statements is
(a) Time-independent Schrödinger equation can be exactly solved for Be\(^{2+}\).
(b) For a particle confined in a one-dimensional box of length \( l \) with infinite potential barriers, the trial variation function \( \phi = \left[ \left( \frac{3}{l^3} \right)^{1/2} x \right] \) is not an acceptable trial wavefunction for \( 0 \le x \le l \).
(c) Wavefunctions for system of Fermions must be anti-symmetric with respect to exchange of any two Fermions in the system.
(d) Born-Oppenheimer approximation can be used to separate the vibrational and rotational motion of a molecule.
Compound K displayed a strong band at 1680 cm−1 in its IR spectrum. Its 1H-NMR spectral data are as follows:
δ (ppm):
7.30 (d, J = 7.2 Hz, 2H)
6.80 (d, J = 7.2 Hz, 2H)
3.80 (septet, J = 7.0 Hz, 1H)
2.20 (s, 3H)
1.90 (d, J = 7.0 Hz, 6H)
The correct structure of compound K is: