List I | List II | ||
---|---|---|---|
I | $\left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$ | P | has two elements |
II | $\left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\} $ | Q | has three elements |
III | $ \left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\} $ | R | has four elements |
IV | $ \left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$ | S | has five elements |
T | has six elements |
(I) → (P); (II) → (S); (III) → (P); (IV) → (S)
(I) → (P); (II) → (P); (III) → (T); (IV) → (R)
(I) → (Q); (II) → (P); (III) → (T); (IV) → (S)
(I) → (Q); (II) → (S); (III) → (P); (IV) → (R)
\[ \cos x + \sin x = 1 \Rightarrow \sqrt{2} \cos \left(x - \frac{\pi}{4}\right) = 1 \] \[ \Rightarrow \cos \left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] \[ \Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4} \] \[ \Rightarrow x = 2n\pi \pm \frac{\pi}{4} \] For \(n = 0\), we have \(x = \frac{\pi}{4}\), and for \(n = 1, 2, 3, \dots\), no solution in \(\left[-\frac{2\pi}{3}, \frac{2\pi}{3}\right]\).
Thus, (I) $\rightarrow$ (P). \[ \tan 3x = \frac{1}{\sqrt{3}} \Rightarrow 3x = n\pi + \frac{\pi}{6} \Rightarrow x = \frac{n\pi + \frac{\pi}{6}}{3} \] For \(n = 0\), we get \(x = \frac{\pi}{18}\); for \(n = 1\), we get \(x = \frac{5\pi}{18}\); and for \(n = 2, 3, \dots\), there are no solutions in the given interval. Thus, (II) $\rightarrow$ (P).
\[ \cos 2x = \frac{\sqrt{3}}{2} \Rightarrow 2x = 2n\pi \pm \frac{\pi}{6} \Rightarrow x = n\pi \pm \frac{\pi}{12} \] For \(n = -1\), we get \(x = \frac{-13\pi}{12}, \frac{-11\pi}{12}\). Thus, (III) $\rightarrow$ (T).
\[ \cos \left(\frac{\pi}{4} + x\right) = \frac{-1}{\sqrt{2}} \Rightarrow \cos \left(\frac{\pi}{4} + x\right) = \cos \left(\frac{3\pi}{4}\right) \] \[ \Rightarrow \frac{\pi}{4} + x = 2n\pi \pm \frac{3\pi}{4} \Rightarrow x = 2n\pi \pm \frac{3\pi}{4} - \frac{\pi}{4} \] For \(n = 0\), we get \(x = \frac{\pi}{2}, -\pi\);
for \(n = 1\), we get \(x = \pi\);
and for \(n = -1\),
we get \(x = \frac{3\pi}{2}\).
Thus, (IV) $\rightarrow$ (R).
So, the correct option is (B): (I) → (P); (II) → (P); (III) → (T); (IV) → (R)
Let \(\alpha\ and\ \beta\) be real numbers such that \(-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}\). If \(\sin (\alpha+\beta)=\frac{1}{3}\ and\ \cos (\alpha-\beta)=\frac{2}{3}\), then the greatest integer less than or equal to
\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\) is ____
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____