List I | List II | ||
|---|---|---|---|
| I | $\left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$ | P | has two elements |
| II | $\left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\} $ | Q | has three elements |
| III | $ \left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\} $ | R | has four elements |
| IV | $ \left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$ | S | has five elements |
| T | has six elements | ||
(I) → (P); (II) → (S); (III) → (P); (IV) → (S)
(I) → (P); (II) → (P); (III) → (T); (IV) → (R)
(I) → (Q); (II) → (P); (III) → (T); (IV) → (S)
(I) → (Q); (II) → (S); (III) → (P); (IV) → (R)
\[ \cos x + \sin x = 1 \Rightarrow \sqrt{2} \cos \left(x - \frac{\pi}{4}\right) = 1 \] \[ \Rightarrow \cos \left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] \[ \Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4} \] \[ \Rightarrow x = 2n\pi \pm \frac{\pi}{4} \] For \(n = 0\), we have \(x = \frac{\pi}{4}\), and for \(n = 1, 2, 3, \dots\), no solution in \(\left[-\frac{2\pi}{3}, \frac{2\pi}{3}\right]\).
Thus, (I) $\rightarrow$ (P). \[ \tan 3x = \frac{1}{\sqrt{3}} \Rightarrow 3x = n\pi + \frac{\pi}{6} \Rightarrow x = \frac{n\pi + \frac{\pi}{6}}{3} \] For \(n = 0\), we get \(x = \frac{\pi}{18}\); for \(n = 1\), we get \(x = \frac{5\pi}{18}\); and for \(n = 2, 3, \dots\), there are no solutions in the given interval. Thus, (II) $\rightarrow$ (P).
\[ \cos 2x = \frac{\sqrt{3}}{2} \Rightarrow 2x = 2n\pi \pm \frac{\pi}{6} \Rightarrow x = n\pi \pm \frac{\pi}{12} \] For \(n = -1\), we get \(x = \frac{-13\pi}{12}, \frac{-11\pi}{12}\). Thus, (III) $\rightarrow$ (T).
\[ \cos \left(\frac{\pi}{4} + x\right) = \frac{-1}{\sqrt{2}} \Rightarrow \cos \left(\frac{\pi}{4} + x\right) = \cos \left(\frac{3\pi}{4}\right) \] \[ \Rightarrow \frac{\pi}{4} + x = 2n\pi \pm \frac{3\pi}{4} \Rightarrow x = 2n\pi \pm \frac{3\pi}{4} - \frac{\pi}{4} \] For \(n = 0\), we get \(x = \frac{\pi}{2}, -\pi\);
for \(n = 1\), we get \(x = \pi\);
and for \(n = -1\),
we get \(x = \frac{3\pi}{2}\).
Thus, (IV) $\rightarrow$ (R).
So, the correct option is (B): (I) → (P); (II) → (P); (III) → (T); (IV) → (R)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?