Concept:
Energy of an electromagnetic wave (photon) is directly proportional to its frequency:
\[
E = h\nu
\]
Hence, higher frequency implies higher energy.
Step 1: Find Frequency of Wave A
\[
\lambda_A = 400\,\text{nm} = 4 \times 10^{-7}\,\text{m}
\]
\[
\nu_A = \frac{c}{\lambda_A}
= \frac{3 \times 10^{8}}{4 \times 10^{-7}}
= 7.5 \times 10^{14}\,\text{s}^{-1}
\]
Step 2: Frequency of Wave B
\[
\nu_B = 10^{16}\,\text{s}^{-1}
\]
Step 3: Find Frequency of Wave C
Given wave number:
\[
\bar{\nu}_C = 10^{4}\,\text{cm}^{-1} = 10^{6}\,\text{m}^{-1}
\]
\[
\lambda_C = \frac{1}{\bar{\nu}_C} = 10^{-6}\,\text{m}
\]
\[
\nu_C = \frac{c}{\lambda_C}
= \frac{3 \times 10^{8}}{10^{-6}}
= 3 \times 10^{14}\,\text{s}^{-1}
\]
Step 4: Compare Energies
\[
\nu_B>\nu_A>\nu_C
\]
\[
\boxed{B>A>C}
\]